
ON THE NON-TRIVIALITY OF THE TORSION SUBGROUP OF THE

ABELIANIZED JOHNSON KERNEL

QUENTIN FAES AND GWÉNAËL MASSUYEAU

Abstract. The Johnson kernel is the subgroup of the mapping class group of a closed ori-

ented surface that is generated by Dehn twists along separating simple closed curves. The

rational abelianization of the Johnson kernel has been computed by Dimca, Hain and Pa-
padima, and a more explicit form was subsequently provided by Morita, Sakasai and Suzuki.

Based on these results, Nozaki, Sato and Suzuki used the theory of finite-type invariants of

3-manifolds to prove that the torsion subgroup of the abelianized Johnson kernel is non-trivial.
In this paper, we give a purely 2-dimensional proof of the non-triviality of this torsion

subgroup and provide a lower bound for its cardinality. Our main tool is the action of the

mapping class group on the Malcev Lie algebra of the fundamental group of the surface. Using
the same infinitesimal techniques, we also provide an alternative diagrammatic description of

the rational abelianized Johnson kernel, and we include in the results the case of an oriented
surface with one boundary component.
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1. Introduction

Let Σ be a compact connected oriented surface with one boundary component, and denote by
M :=M(Σ) the mapping class group of Σ. Although its abelianization is trivial for g ≥ 3 [39],
the group M has remarkable subgroups with highly non-trivial abelianization. This is particu-
larly manifest for the Torelli group, which is the subgroup I := I(Σ) of M acting trivially on
the homology H := H1(Σ;Z) of the surface. In his fundamental works of the eighties (including
[15, 16, 17]), Johnson proved that (like M) the group I is finitely generated and that (unlike
M) it has an interesting abelianization Iab. In fact, Johnson gave a full characterization of Iab,
revealing that its torsion-free quotient is isomorphic to Λ3H and that its torsion subgroup is
isomorphic to the space of quadratic boolean functions on the space of spin structures of Σ. The
map I → Λ3H (corresponding to the canonical projection of Iab onto its torsion-free quotient)
is the first τ1 of a series of homomorphisms (τk)k, which are now referred to as the Johnson
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homomorphisms and are defined on the successive terms of the Johnson filtration
(
M[k]

)
k
. In

particular, the subgroup K :=M[2] of I =M[1] plays a very important role in Johnson’s works:
called the Johnson kernel, K is generated by Dehn twists along separating simple closed curves.
In the sequel, those generators will be refered to as “separating twists”.

Besides, Johnson did similar constructions and proved similar results for a closed oriented

surface of genus g ≥ 3. Here it will be convenient to think of it as the surface ÛΣ obtained by

gluing a 2-disk to Σ. Then, for simplicity, we shall denote by ıM the mapping class group of ÛΣ,

by ÛI its Torelli group and by ÛK its Johnson kernel.
In the last decade, major advances on the abelianization of the Johnson kernel have been

accomplished for the closed surface ÛΣ. Firstly, Dimca and Papadima proved that the rational

abelianization ÛKab ⊗ Q is finite-dimensional [7]. Later, using this result and Hain’s description

of the Malcev Lie algebra of ÛI [23], Dimca, Hain and Papadima computed this vector space [6].

More recently, Morita, Sakasai and Suzuki [36] could express this computation of ÛKab ⊗Q in a

more explicit form, involving two homomorphisms on ÛK that Morita introduced in the nineties:

namely, a by-product Ûd of the Casson invariant [31] and a “refined” version of the second Johnson
homomorphism τ2 [32]. As we shall see in §3, the results of [6, 36] can be adapted to the case of
the bordered surface Σ: this will give us the opportunity to revisit these results and provide an
alternative diagrammatic description of Kab ⊗Q.

Using the computation of ÛKab ⊗ Q given in [36] and appealing to the theory of finite-type
invariants of 3-manifolds, Nozaki, Sato and Suzuki [37] were able to show that the torsion

subgroup of ÛKab is non-trivial. To be more explicit on their methods, let us mention that they
use the LMO homomorphism (which is a universal rational finite-type invariant of homology
cylinders [2, 22]), and that their arguments involve 3-dimensional surgery techniques (which are
known as clasper calculus [12, 20]). Hence their proof requires a certain level of expertise in the

theory of finite-type invariants, and it does not conclude with an explicit torsion element of ÛKab.
Regarding this result of Nozaki, Sato and Suzuki, our goal in this paper is two-fold. On

the one hand, we provide explicit elements of the torsion subgroup of ÛKab, and we prove their
non-triviality by purely 2-dimensional methods. Thus, we hope to make their result accessible
to a wider audience, and to open the way towards a full computation of the torsion subgroup

of ÛKab. On the other hand, we also deal with the case of the bordered surface Σ:

Theorem A. For a compact connected oriented surface with 0 or 1 boundary component, of
genus g ≥ 6, the abelianization of the Johnson kernel has a non-trivial torsion subgroup.

Our proof of Theorem A is based on the action of M on the Malcev Lie algebra of the
fundamental group π1(Σ). The possibility of such a proof is not so surprising, since Nozaki,
Sato and Suzuki only use the tree-reduction of the LMO homomorphism in their arguments
and, according to [27], the latter encodes in some way the action of the Torelli group I on the
Malcev Lie algebra of π1(Σ). (See Remark 2.9 and Remark 2.11 for the exact relationship with
the arguments of [37].)

The proof of Theorem A, which is done in §4, can be summarized as follows. We use the
diagrammatic description of the action of I on the Malcev Lie algebra of π1(Σ) that is given
in [27]. From this infinitesimal Dehn–Nielsen representation, we derive in §2 a map R from the
Johnson kernel K to a torsion abelian group. Although this map R is only polynomial of de-
gree 2, it restricts on the fourth termM[4] of the Johnson filtration to a homomorphism (which
is a reduction of τ4). Then we exhibit an explicit element of M[4], which is not seen by the
“core” of the Casson invariant d but is detected by the map R:

Theorem B. Assume that g ≥ 3. There exists a ϕ ∈ M[4] such that d(ϕ) = 0 and R(ϕ) 6= 0.

Moreover, its extension Ûϕ ∈ ıM[4] to the closed surface ÛΣ also satisfies Ûd(Ûϕ) = 0 and R(Ûϕ) 6= 0.

Since the kernel of Morita’s refinement of τ2 is M[4], we deduce from Theorem B and the
above-mentioned computation of Kab ⊗Q that ϕ provides a non-trivial torsion element of Kab,
thus proving Theorem A. Our proof of Theorem B is purely two-dimensional and involves a rather
long computation of R(ϕ). We also give a second proof of Theorem B, leading to another explicit
element ϕ′: closer to the original arguments of [37], this proof is certainly less computational,
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but it is done in the 3-dimensional framework of homology cylinders and needs the techniques
of clasper calculus, including results of [12, 20, 11, 28, 5]. Indeed, the restriction of R toM[4] is
the reduction of τ4 that Conant, Schneiderman and Teichner considered in [5] under the name of
“higher-order Sato–Levine invariant” (by analogy with the study of Milnor invariants of links).

We conclude the paper by giving in §4.4 lower bounds for the cardinalities of the torsion

subgroups of Kab and ÛKab. These lower bounds are obtained by a rough estimation of the im-
age of R, using the canonical action of the mapping class group on the abelianized Johnson kernel.

Acknowledgment. The authors would like to thank Lucy Moser–Jauslin for helpful discussions
about algebraic groups. This research has been partly funded by the project “ITIQ-3D” of the
Région Bourgogne Franche–Comté and the project “AlMaRe” (ANR-19-CE40-0001-01). The
IMB receives support from the EIPHI Graduate School (ANR-17-EURE-0002).

2. The infinitesimal Dehn–Nielsen representation and the map R

The Dehn–Nielsen representation of the mapping class group is defined by its canonical action
on the fundamental group of the surface. We review an infinitesimal version of the Dehn–Nielsen
representation that has been introduced in [27]. Then we derive from this a quadratic map R,
from the abelianized Johnson kernel to a torsion abelian group.

2.1. The space of tree diagrams. We first recall what is the target of the infinitesimal Dehn–
Nielsen representation. A tree diagram is a finite, unitrivalent, connected, acyclic graph whose
trivalent vertices are oriented (i.e. edges are cyclically ordered around each trivalent vertex),
and whose univalent vertices are colored by H = H1(Σ;Z): the former are called nodes and the
latter are called leaves. For example, here is a tree diagram with 3 nodes and 5 leaves:

(2.1)
a

b
c

d

e
(where a, b, c, d, e ∈ H).

Here, and henceforth, orientations at trivalent vertices are always given by the trigonometric
orientation of the plane. Let T (H) be the abelian group generated by tree diagrams modulo the
following relations:

AS IHX multilinearity

= − − + = 0 +=

h1 + h2 h1 h2

By defining the degree of a tree diagram to be the number of nodes, we turn T (H) into a graded
abelian group:

T (H) =

+∞⊕
d=1

Td(H)

The abelian group T (H) has the structure of a Lie ring, which involves the intersection pairing
ω : H ×H → Z of Σ. Specifically, the bracket of two tree diagrams P and Q is given by

[P,Q] := (sum of all ways of ω-connecting one leaf of P to one leaf of Q)

where “ω-connecting” an x-colored vertex u of P to a y-colored vertex v of Q results in the
element of T (H) obtained by gluing u to v and multiplying by ω(x, y).

Setting HQ := H1(Σ;Q), we define a graded Q-vector space T (HQ) in a similar way by
generators and relations. Note that we have T (HQ) ' T (H)⊗Q, and T (HQ) has the structure

of a Lie algebra. This space or, to be more accurate its degree-completion T̂ (HQ), will be used
in the next subsection as the target of the “infinitesimal” Dehn–Nielsen representation.

The abelian group T (H) and the vector space T (HQ) appear in the study of Milnor invariants
of links and Johnson homomorphisms for mapping class groups, and they constitute the “tree
levels” of the theories of finite-type invariants (see for instance [18, 11, 19, 27]). Consequently,
their structure has been much studied. Before reviewing their relevance for the study of mapping
class groups, we now recall what is known about this structure in relation with free Lie rings.

Let L := L(H) be the Lie ring freely generated by H and, similarly, let LQ := L(HQ) be the
Lie algebra freely generated by HQ. For any integer k ≥ 1, we denote by Dk(H) the kernel of the
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Lie bracket map H ⊗ Lk+1 → Lk+2 and we set D(H) :=
⊕

k Dk(H). There is a homomorphism
of graded abelian groups

(2.2) η : T (H) −→ D(H)

which maps any tree diagram T to the sum∑
v

col(v)⊗ brack(Tv)

over all leaves v of T : here col(v) denotes the color of v, and brack(Tv) is the iterated Lie bracket
defined by the tree T rooted at v. In the example (2.1), the tree rooted at its d-colored vertex
defines

brack

( e a b c

root

)
= [e, [[a, b], c]].

The map η is known to be an isomorphism with rational coefficients

(2.3) ηQ : T (HQ)
'−→ D(HQ)

(see, for instance, [19]), but it is not bijective with Z-linear coefficients. Indeed D(H) is free
abelian but, as we shall recall, T (H) has 2-torsion in odd degrees.

To understand the lack of bijectivity of η, Levine considers the quasi-Lie ring L′ := L′(H)
freely generated by H. Recall from [26] that the definition of a “quasi-Lie” ring requires the
bracket to be only skew-symetric, instead of alternate as a Lie bracket should be. Levine proves
that the canonical map L′ → L is an isomorphism in odd degree and that, in even degree, there
is a short exact sequence

(2.4) 0→ Lk ⊗ Z2 −→ L′2k −→ L2k → 0

where the left-hand homomorphism is defined by x ⊗ 1 7→ [x, x]. For any k ≥ 1, let D′k(H)
be the kernel of the quasi-Lie bracket H ⊗ L′k+1 → L′k+2 and set D′(H) :=

⊕
k D
′
k(H). As a

consequence of (2.4), there are short exact sequences

(2.5) 0→ D′2k(H) −→ D2k(H) −→ Lk+1 ⊗ Z2 → 0,

(2.6) 0→ H ⊗ Lk+1 ⊗ Z2 −→ D′2k+1(H) −→ D2k+1(H)→ 0.

Levine observes that the map η can be defined similarly in the quasi-Lie case to get a surjective
homomorphism

η′ : T (H) −→ D′(H),

and the injectivity of η′ is proved by Conant, Schneiderman and Teichner in [4]. Hence the
following commutative diagram:

T (H)

η′

'

$$

η
// D(H)

D′(H)

OO

Thus, the above results combine to the following statement:

Theorem 2.1 (Levine, Conant–Schneiderman–Teichner). For any integer k ≥ 1, there are short
exact sequences

(2.7) 0→ T2k(H)
η−→ D2k(H)

$−→ Lk+1 ⊗ Z2 → 0,

(2.8) 0→ H ⊗ Lk+1 ⊗ Z2
ι−→ T2k+1(H)

η−→ D2k+1(H)→ 0.

Furthermore, the homomorphism $ is uniquely determined on the free abelian group D2k(H)
by the fact that

(2.9) $
(1

2
η(u u)

)
= brack(u)⊗ 1

for any rooted tree u. (The map ι can also be explicitly defined, but we shall not need (2.8).)
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Figure 1. A system of “meridians & parallels” in the oriented surface Σ

Remark 2.2. Apart from the Lie algebra structure on T (H) which needs the symplectic form
ω on H, all constructions and results of this subsection work for any free abelian group H. �

2.2. The infinitesimal Dehn–Nielsen representation. The central ingredient to define the
“infinitesimal” version of the Dehn–Nielsen representation is the following notion.

Let π := π1(Σ, ?) be the fundamental group of Σ based at a point ? ∈ ∂Σ, and let L̂Q be the

degree-completion of LQ. A symplectic logansion of π is a map θ : π → L̂Q with the following
properties:

• for each x ∈ π, the Lie series θ(x) starts in degree 1 with the class of x in π
[π,π]⊗Q ' H

Q;

• for all x, y ∈ π, we have θ(xy) = θ(x) ? θ(y) where ? denotes the Baker–Campbell–

Hausdorff product1 in L̂Q induced by its Lie bracket;
• θ maps the class ζ := [∂Σ] of the oriented boundary of Σ to −ω where ω ∈ Λ2HQ ' LQ

2

is the dual of the intersection pairing.

Remark 2.3. A symplectic logansion is a “symplectic expansion” in the sense of [27], composed
with the logarithm series to transform group-like elements into primitive elements. �

For concrete computations, we shall use in §4 the following instance of a symplectic logansion.

Example 2.4. Let (α1, . . . , αg, β1, . . . , βg) be the system of “meridians & parallels” shown in
Figure 1, which defines a basis of the free group π and induces a basis (a1, . . . , ag, b1, . . . , bg) of
the free abelian group H. According to [27, Example 2.19], there is a symplectic logansion θ
which, in degree ≤ 4, is given by

θ(αi) = ai −
1

2
[ai, bi] +

1

12
[[ai, bi], bi]−

1

2

∑
j<i

[[aj , bj ], ai]

− 1

24
[ai, [ai, [ai, bi]]] +

1

4

∑
j<i

[[aj , bj ], [ai, bi]] + (deg ≥ 5),

θ(βi) = bi −
1

2
[ai, bi] +

1

12
[ai, [ai, bi]] +

1

4
[[ai, bi], bi] +

1

2

∑
j<i

[bi, [aj , bj ]]

− 1

24
[[[ai, bi], bi], bi] +

1

4

∑
j<i

[[aj , bj ], [ai, bi]] + (deg ≥ 5).

�

To pursue towards the definition of the “infinitesimal” version of the Dehn–Nielsen representa-
tion, we introduce the following notations. Let Aut(L̂Q) be the group of filtered automorphisms

of L̂Q, and let Autω(L̂Q) be the subgroup of Aut(L̂Q) fixing ω ∈ Λ2HQ ' L2(HQ). As explained
in [27, §3.1], the canonical action of M on π, namely the Dehn–Nielsen representation

ρ :M−→ Autζ(π),

is equivalent to an action ofM on the Malcev Lie algebra of π and, via the symplectic logansion θ,
the latter can equivalenty be regarded as an action

%θ :M−→ Autω(L̂Q)

1Abbreviated to BCH product in the sequel.
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of M on the filtered Lie algebra L̂Q. Furthermore, %θ maps the Torelli group I ⊂ M to the
subgroup IAutω(L̂Q) of automorphisms that induce the identity at the graded level, and this is
the source of a bijection

log : IAutω(L̂Q)
'−→ Der+

ω (L̂Q)

onto the space of derivations of L̂Q that strictly increase degrees and vanish on ω.
It is well-known that Der+

ω (L) (resp. Der+
ω (LQ)) is canonically isomorphic to D(H) (resp. to

D(HQ)): specifically, a derivation d restricts to a homomorphism H → L and, so, induces an
element of H ⊗ L using the isomorphism H ' H∗ defined by h 7→ ω(h,−); then the symplectic
condition d(ω) = 0 implies that this element of H ⊗ L belongs to the subgroup D(H). Thus,
in the sequel, we will use interchangeably Der+

ω (L) (resp. Der+
ω (LQ)) and D(H) (resp. D(HQ)).

Recall that the space of derivations has a canonical Lie bracket given by [d1, d2] := d1◦d2−d2◦d1.
Clearly Der+

ω (LQ) is a Lie subalgebra, and it turns out that the isomorphism (2.3) preserves the
Lie brackets.

Finally, we define the infinitesimal Dehn–Nielsen representation of the Torelli group by the
following composition of maps:

(2.10) I
%θ
//

rθ

55
IAutω

(
L̂Q)

log

'
// Der+

ω (L̂Q)
(ηQ)−1

'
// T̂ (HQ).

The map rθ is a group homomorphism if we endow the target T̂ (HQ) with the BCH product ?
induced by its Lie bracket: thus, we have

rθ(fh) = rθ(f) ? rθ(h)

= rθ(f) + rθ(h) +
1

2

[
rθ(f), rθ(h)

]
+

1

12

[
rθ(f),

[
rθ(f), rθ(h)

]]
+

1

12

[
rθ(h),

[
rθ(h), rθ(f)

]]
+ · · ·(2.11)

for any f, h ∈ I. See [27] for details about the above construction, and see [22] for a survey.

Remark 2.5. The map rθ can be extended to the full mapping class group by setting

(2.12) ∀f ∈M, r̃θ(f) := (ηQ)−1 log
(
%θ(f) ◦ f−1

∗
)
,

where f∗ : HQ → HQ is the automorphism induced by f in homology and is extended to an
automorphism of L̂Q in the canonical way. Then the map r̃θ :M→ T̂ (HQ) satisfies

(2.13) ∀f, h ∈M, r̃θ(fh) = r̃θ(f) ?
(
f∗ · r̃θ(h)

)
where f∗ acts on r̃θ(h) by transforming the colors of all its leaves. �

2.3. Truncations of the infinitesimal Dehn–Nielsen representation. We now consider
the Johnson filtration of the mapping class group

M⊃M[1]︸ ︷︷ ︸
=I

⊃M[2]︸ ︷︷ ︸
=K

⊃ · · · ⊃ M[k] ⊃M[k + 1] ⊃ · · ·

where M[k] is defined as the kernel of the composition

M
ρ
//

ρk

99
Aut(π) // Aut(π/Γk+1π).

(Here, and in the sequel, we denote by G = Γ1G ⊃ Γ2G ⊃ · · · the lower central series of a
group G.) Recall from [32] that, for any k ≥ 1, the restriction of ρk+1 to M[k] can be turned
into a map

τk :M[k] −→ Dk(H) ⊂ H ⊗ Lk+1

which is known as the k-th Johnson homomorphism. Since the abelian group Dk(H) is torsion-
free, we do not loose any information by considering τk with values in the vector space Dk(HQ) '
Dk(H)⊗Q. Then it is equivalent to the degree k part of the infinitesimal Dehn–Nielsen repre-
sentation rθ, in the sense that

(2.14) (ηQ)−1 ◦ τk = rθk :M[k] −→ Tk(HQ).
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In fact, a stronger version of (2.14) is known: the truncation

(2.15) rθ[k,2k[ :M[k] −→
2k−1⊕
d=k

Td(HQ)

of rθ on M[k] to the degrees k, k + 1, . . . , 2k − 1, which encodes the restriction of ρ2k to M[k],
is equivalent to Morita’s “refinement” τ̃k of τk [32]: see [27] for a precise statement and a proof.

We are also interested in larger truncations of the infinitesimal Dehn–Nielsen representation
on M[k]. Specifically, for any integer k ≥ 1, we consider the map

rθ[k,3k[ :M[k] −→
3k−1⊕
d=k

Td(HQ)

which is not a homomorphism anymore.

Lemma 2.6. For all f, h ∈M[k], we have

rθ[k,3k[(fh) = rθ[k,3k[(f) + rθ[k,3k[(h) +
1

2

∑
i≥k, j≥k
i+j<3k

[
rθi (f), rθj (h)

]
.

Proof. Since rθ(f) and rθ(h) start in degree k, we deduce from (2.11) that

rθ(fh) = rθ(f) + rθ(h) +
1

2

[
rθ(f), rθ(h)] + (deg ≥ 3k)

and the conclusion follows. �

By specializing Lemma 2.6 to k = 2, we obtain for any f, h ∈ K

rθ[2,5](fh) = rθ[2,5](f) + rθ[2,5](h) +
1

2

[
rθ2(f), rθ2(h)

]
+

1

2

[
rθ2(f), rθ3(h)

]
+

1

2

[
rθ3(f), rθ2(h)

]
and, in particular,

(2.16) rθ4(fh) = rθ4(f) + rθ4(h) +
1

2

[
(ηQ)−1τ2(f), (ηQ)−1τ2(h)

]
.

Remark 2.7. In the sequel, we will not mention anymore the isomorphism ηQ when composed
with a Johnson homomorphism. Said differently, the values of the Johnson homomorphisms are
considered either as derivations or Q-linear combinations of tree diagrams, depending on the
context. For instance, equation (2.16) simply writes rθ4(fh) = rθ4(f) + rθ4(h) + 1

2

[
τ2(f), τ2(h)

]
with this convention. �

2.4. The quadratic map R in the bordered case. Let θ be a symplectic logansion of π. We
consider the map

(2.17) Rθ : K −→ T4(HQ)

T4(H)
, f 7−→

(
rθ4(f) mod 1

)
,

and we simply denote it by R in the sequel. Here, T4(H) is viewed as a lattice in T4(HQ) (since it
is torsion-free as a consequence of (2.7)), and we refer to the congruence relation modulo T4(H)
in T4(HQ) as the congruence modulo 1.

Lemma 2.8. The map R induces a map Rab on the abelianization Kab = K/[K,K], which is
polynomial of degree 2.

Proof. For any f ∈ K and h ∈ [K,K], we obtain from (2.16) and the nullity of τ2 on [K,K] that
rθ4(fh) = rθ4(f) + rθ4(h). Hence, to deduce that R(f) = R(fh), it suffices to check that R(h) = 0
and we can assume without loss of generality that h is a single commutator: h = [h′, h′′] with
h′, h′′ ∈ K. A straightforward computation, still based on (2.16), gives

rθ4(h) = rθ4([h′, h′′]) = [τ2(h′), τ2(h′′)] ∈ T4(HQ).

Since we have τ2(K) ⊂ D2(H), it suffices to prove the following inclusion in T4(HQ) ' D4(H)⊗Q:

(2.18) [D2(H),D2(H)] ⊂ T4(H).

On this purpose, we decompose the Lie bracket of T (HQ) as follows. Choose a symplectic basis
(a1, . . . , ag, b1, . . . , bg) of H, and let ` : HQ ×HQ → HQ be the bilinear map defined by

`(ai, bj) := δij , `(bj , ai) := 0, `(ai, aj) := 0, `(bi, bj) := 0.
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Given any two trees P,Q ∈ T (HQ), we set

P . Q := (sum of all ways of `-connecting one leaf of P to one leaf of Q)

and we extend this to a bilinear map . : T (HQ) × T (HQ) → T (HQ). Then, we have [P,Q] =
P . Q−Q . P since ω(x, y) = `(x, y)− `(y, x) for any x, y ∈ HQ. Thus, (2.18) will follow from
the following inclusion in T4(HQ) ' D4(H)⊗Q:

(2.19) D2(H) . D2(H) ⊂ T4(H).

It follows from (2.7) that D2(H) is generated by the following elements:

a b c d
with a, b, c, d ∈ H, 1

2 u v u v
with u, v ∈ H.

Hence, to prove (2.19), it suffices to verify the following:

(1)
a b c d

.
a′ b′ c′ d′

∈ T4(H), for any a, b, c, d, a′, b′, c′, d′ ∈ H;

(2)
a b c d

.
u v u v

∈ 2T4(H), for any a, b, c, d, u, v ∈ H;

(2’)
u v u v

.
a b c d

∈ 2T4(H), for any a, b, c, d, u, v ∈ H;

(3)
u v u v

.
u′ v′ u′ v′

∈ 4T4(H), for any u, v, u′, v′ ∈ H.

(1) is obvious. (2) (resp. (2’)) follows from the fact that each term resulting from the . operation
here is repeated due to the symmetry of the right-hand (resp. left-hand) tree diagram. (3) is
verified in a similar way.

Thus we have shown that R factorizes to a map Rab : Kab → T (HQ)/T (H) verifying

Rab({f}+ {h}) = Rab({f}) +Rab({h}) +
1

2

[
τ2(f), τ2(h)

]
where τ2 : Kab → D2(H) is the group homomorphism induced by τ2. The bilinearity of the Lie
bracket in T (HQ) implies that Rab is a polynomial map of degree 2 on the group Kab. �

Remark 2.9. The map Rab is not a group homomorphism, i.e. it is not of degree 1 as a poly-
nomial map on the group Kab. Yet, using the operation . introduced in the proof of Lemma 2.8,
we can instead of R consider the map R◦ defined by

(2.20) R◦(f) :=
(
rθ4(f)− 1

2
τ2(f) . τ2(f) mod 1

)
∈ T4(HQ)

T4(H)
,

and deduce from (2.19) that R◦ is a group homomorphism on K. (Note that R◦ depends on the
choice of both a symplectic logansion of π and a symplectic basis of H.)

When θ is the symplectic logansion defined by the LMO functor [27, §5.2], the homomorphism

R◦ is equal to the degree 4 part of the “mod 1 tree reduction” of logt Z̃
Y , which is considered

by Nozaki, Sato and Suzuki [37]. (This equality is a consequence of [27, Theorem 5.13].) �

The next lemma shows that the restriction of R to M[4] is determined by the 4-th Johnson
homomorphism (and, so, does not depend on the choice of θ).

Lemma 2.10. We have the following commutative diagram

M[4]
τ4 //

R
))

D4(H)
$ // // L3 ⊗ Z2��

j

��

T4(HQ)
T4(H) ,

where $ is the map given by (2.9) and j is defined by

j([a, [b, c]]⊗ 1) :=
1

2 a
b

c a

b
c
.



ON THE NON-TRIVIALITY OF THE TORSION SUBGROUP OF THE ABELIANIZED JOHNSON KERNEL 9

Proof. The isomorphism ηQ : T4(HQ)→ D4(HQ) induces an isomorphism between T4(HQ)/T4(H)
and D4(HQ)/η(T4(H)). The latter contains D4(H)/η(T4(H)) which, according to (2.7), is iso-
morphic to L3 ⊗ Z2. Then, we deduce from (2.17) and (2.14) that the restriction of R to M[4]
corresponds (through ηQ) to the composition

M[4]
τ4 // D4(H) // // D4(H)

η(T4(H)) .

Then we conclude thanks to the definition (2.9) of $. �

2.5. The quadratic map R in the closed case. We now consider the closed surface ÛΣ, which
is obtained from Σ by gluing a 2-disk. All the previous constructions of this section for Σ can

be performed for ÛΣ, but with extra technical difficulties which we outline.
First of all, we need to consider the subgroup I of T (H) that is generated by trees showing

an ω-vertex, as shown below:

:=

g∑
i=1

ω bi ai

It is easily deduced from the IHX relation that I is an ideal of the Lie ring T (H) (see [21, §7]),
hence the quotient ÙT (H) :=

T (H)

I

is a Lie ring. Besides, let ÛL be the quotient of L by the ideal generated by ω ∈ L2, let ÛDd(H) be

the kernel of the Lie bracket map H ⊗ ÛLd+1 → ÛLd+2 for any d ≥ 1, and set

OÛDd(H) :=
ÛDd(H)

(idH ⊗ [·, ·])
(
ω ⊗ ÛLd)

where [·, ·] denotes the Lie bracket map H ⊗ ÛLd → ÛLd+1. Then, similarly to (2.2), we have a
homomorphism

(2.21) η : ÙTd(H) −→ OÛDd(H)

which, just as (2.2), induces an isomorphism ηQ for rational coefficients.

In the case of the closed surface ÛΣ, the infinitesimal Dehn–Nielsen representation of the Torelli
group [22] is the composition

(2.22) ÛI %θ
//

rθ

55
IOut

(ÛLQ) log

'
// ODer+

(ÛLQ) (ηQ)−1

'
// ÙT (HQ)

where, to simplify notations, we have omitted the ·̂ decoration indicating degree-completions,

IOut
(ÛLQ) is the group of automorphisms of ÛLQ (that induce the identity at the graded level)

modulo inner automorphisms, and ODer+
(ÛLQ) is the Lie algebra of derivations of ÛLQ (that

strictly increase degrees) modulo inner derivations. In the definition of (2.22), we use the fact
that the symplectic logansion θ induces an isomorphism between the Malcev Lie algebra of

π1(ÛΣ, ?) and (the degree-completion of) ÛLQ [27, Prop. 2.18], and we have identified OÛD(HQ) with

ODer+
(ÛLQ) in the same way we have already identified D(HQ) with Der+

ω (LQ). By construction,
there is a commutative diagram

(2.23) I rθ //

����

T (HQ)

����ÛI
rθ
// ÙT (HQ).

According to [34], and similarly to the case of the bordered surface Σ, the mapping class

group ıM of ÛΣ has a Johnson filtrationıM⊃ ıM[1]︸ ︷︷ ︸
=ÛI ⊃ ıM[2]︸ ︷︷ ︸

=ÙK ⊃ · · · ⊃ ıM[k] ⊃ ıM[k + 1] ⊃ · · ·
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and, for every integer k ≥ 1, the k-th Johnson homomorphism takes the form

τk : ıM[k] −→ OÛDk(H) ⊂ H ⊗ ÛLk+1

(idH ⊗ [·, ·])
(
ω ⊗ ÛLk)

.

According to [1, Lemma 2], the abelian group OÛDk(H) is torsion-free; hence, as in the case of Σ,
there is no loss of information in tensoring τk with Q and the analogue of (2.14) holds true in
the closed case too. As an analogue of Morita’s refinement τ̃k of τk in the closed case, we shall
consider the homomorphism

(2.24) rθ[k,2k[ : ıM[k] −→
2k−1⊕
d=k

ÙTd(HQ).

Similarly to the case of the surface Σ, we now define by the same formula (2.17) a map

(2.25) R : ÛK −→ ÙT4(HQ)ÙT4(H)
.

Here ÙT4(HQ)/ÙT4(H) denotes the quotient of ÙT4(HQ) by the image of the canonical group homo-

morphism ÙT4(H) → ÙT4(HQ): since it is not clear whether ÙT4(H) is torsion-free (in contrast to
the case of Σ), this could be a slight abuse of notation. As a consequence of (2.23), we have the
following commutative diagram:

(2.26) K R //

����

T4(HQ)
T4(H)

����ÛK
R
//
ÙT4(HQ)ÙT4(H)

Hence, by Lemma 2.8, we obtain a map Rab on the abelianization ÛKab = ÛK/[ÛK, ÛK] which is
polynomial of degree 2.

Remark 2.11. The variation R◦ : K → T4(HQ)/T4(H) of R introduced in Remark 2.9 does

not factorize to a group homomorphism from ÛK to ÙT4(HQ)/ÙT4(H). To produce from R◦ a group

homomorphism on ÛK, one would need to add extra relations to the quotient ÙT4(HQ)/ÙT4(H).

These extra relations seem to be missing in the definition of the map induced by logt Z̃
Y that is

considered in the proof of [37, Cor. 1.5]. (Indeed, the subspace of diagrammatic relations needed

to have the LMO homomorphism Z̃Y defined on “closed” homology cylinders is an ideal for the
“star product” denoted by ? in [2], but it is not an ideal for the disjoint union operation t:

hence logt Z̃
Y does not factorize to the monoid of “closed” homology cylinders.) �

The next lemma shows that the restriction of R to ıM[4] is determined by the 4-th Johnson
homomorphism (and, so, does not depend on the choice of θ).

Lemma 2.12. There is a non-trivial 2-torsion abelian group L that fits into a commutative
diagram of the following form: ıM[4]

τ4 //

R
))

OÛD4(H)
$ // // L��

j

��ÙT4(HQ)ÙT4(H)
.

Proof. Set

L :=
OÛD4(H)

η
(ÙT4(H)

)
and let $ : OÛD4(H)→ L be the canonical projection. Like in the bordered case, we obtain that

the restriction of R to ıM[4] is equivalent to the composition

(2.27) ıM[4]
τ4 // OÛD4(H)

$ // // L
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through the isomorphism

ηQ :
ÙT4(HQ)ÙT4(H)

'−→ OÛD4(HQ)

η
(ÙT4(H)

) .
Let p : L→ ÛL be the canonical projection, whose kernel is the ideal 〈〈ω〉〉 generated by ω. The
map H ⊗ 〈〈ω〉〉5 → 〈〈ω〉〉6 defined by the Lie bracket is surjective. Hence an application of the
snake lemma to the commutative diagram

0 // D4(H)

q

��

// H ⊗ L5
//

H⊗p5
��

L6
//

p6

��

0

0 // ÛD4(H) // H ⊗ ÛL5
// ÛL6

// 0

shows that the induced map q : D4(H)→ ÛD4(H) is surjective, with kernel
(
H⊗〈〈ω〉〉5

)
∩D4(H).

Hence we deduce that q induces an isomorphism from

D4(H)

η(T4(H)) +
(
H ⊗ 〈〈ω〉〉5 + (id⊗[·, ·])(ω ⊗ L4)

)
∩ D4(H)

to L. But, by considering tree diagrams in T4(H) with ω-vertices, we obtain the following
identity of subgroups of H ⊗ L5:

η(T4(H)) +
(
H ⊗ 〈〈ω〉〉5 + (id⊗[·, ·])(ω ⊗ L4)

)
∩ D4(H) = η(T4(H)) +

(
H ⊗ 〈〈ω〉〉5

)
∩ D4(H).

Hence L is canonically isomorphic to

L′ :=
D4(H)

η(T4(H)) +
(
H ⊗ 〈〈ω〉〉5

)
∩ D4(H)

(
'

ÛD4(H)

qη(T4(H))

)

Being a quotient of D4(H)/η(T4(H))
(2.7)
' L3 ⊗ Z2, the abelian group L′ is 2-torsion. Let

A := H/〈b1, . . . , bg〉: using Remark 2.2, we see that the canonical projection H → A induces a
map m : D4(H)/η(T4(H))→ D4(A)/η(T4(A)). According to (2.7), m is essentially the canonical
map L3(H)⊗ Z2 → L3(A)⊗ Z2, so that it is not zero. Thus, to conclude that L′ is not trivial,
it suffices to observe that the homomorphism m factorizes through L′. �

Remark 2.13. It is likely that L ' ÛL3 ⊗ Z2. Indeed, the composition of homomorphisms

L3 ⊗ Z2
j
// T4(HQ)
T4(H)

// //
ÙT4(HQ)ÙT4(H)

,

where j is the map of Lemma 2.10, factorizes through the quotient ÛL3 ⊗ Z2 of L3 ⊗ Z2. Hence

we have a homomorphism Ûj : ÛL3 ⊗ Z2 → ÙT4(HQ)/ÙT4(H) such that

(2.28) ÛL3 ⊗ Z2

Ûj
//

∃
!! !!

yyyy

ÙT4(HQ)ÙT4(H)

L3(A)⊗ Z2 Loo
>>

j

>>

where the bottom map is given by the last paragraph of the proof of Lemma 2.12, and the

leftmost map is the canonical projection. It is expected that Ûj is injective, which is equivalent
to the identity $

(
(H ⊗ 〈〈ω〉〉5) ∩ D4(H)

)
= [ω,H]⊗ Z2. �

3. On the rational abelianization of the Johnson kernel

In this section, we review the computation of the rational abelianization of the Johnson kernel
by Dimca, Hain and Papadima [6], in the more explicit form given by Morita, Sakasai and Suzuki

[36]. Although these results are obtained in [6] and [36] only for ÛKab⊗Q, we shall see that they
can be proved for Kab ⊗ Q too. Furthermore, we make the computation very explicit by using
the infinitesimal Dehn–Nielsen representation.
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3.1. The closed case. In his study of the relationship between the Casson invariant and the
structure of the Torelli group [30, 31], Morita introduced two fundamental homomorphisms

d : K −→ Z and d′ : K −→ Z

of a very different nature. While d′ is defined from τ2 (and, so, is determined by the action of
K on π/Γ4π), the homomorphism d involves the Casson invariant in its definition (and, as a
consequence of results in [23], it is not determined by the action of K on π/Γkπ for any fixed k).
Yet, both of them are invariant under the conjugacy action of M on K, and they have simple
values on any separating twist Tγ of genus h:

d(Tγ) = 4h(h− 1) and d′(Tγ) = h(2h+ 1).

Furthermore, Morita proved in [31, Theorem 5.7] that the linear combinationÛd := −1 + 2g

12
· d+

g − 1

3
· d′

vanishes on the kernel of the canonical map K → ÛK: hence there is an ıM-invariant group

homomorphism Ûd : ÛK → Z satisfying Ûd(Tγ) = h(g − h).

In the case of the closed surface ÛΣ, the rational abelianization of the Johnson kernel is deter-
mined by the following theorem, which results from [6, Th. B] combined with [36, Th. 1.4].

Theorem 3.1 (Dimca–Hain–Papadima, Morita–Sakasai–Suzuki). In genus g ≥ 6, the group
homomorphism (Ûd, rθ[2,4[

)
: ÛK −→ Z⊕ ÙT2(HQ)⊕ ÙT3(HQ)

induces a linear embedding of ÛKab ⊗Q into Q⊕ ÙT2(HQ)⊕ ÙT3(HQ).

Note that the truncation rθ[2,4[ of the infinitesimal Dehn–Nielsen representation plays the same

role as the second Morita homomorphism τ̃2 in the statement of [36, Th. 1.4].

3.2. The bordered case. Similarly to Theorem 3.1, we have the following result for the bor-
dered surface Σ.

Theorem 3.2. In genus g ≥ 6, the group homomorphism(
d, rθ[2,4[

)
: K −→ Z⊕ T2(HQ)⊕ T3(HQ)

induces a linear embedding of Kab ⊗Q into Q⊕ T2(HQ)⊕ T3(HQ).

To prove Theorem 3.2, we shall mainly adapt the proof of Theorem 3.1 given in [6] and [36].
So, as in the closed case, our arguments will require some fundamental results of Dimca &
Papadima [7], Hain [23] (which impose the lower bound on the genus g) and Putman [41]. But,
because we were not able to completely “translate” the arguments of [6] from the closed case to
the bordered case, we will also need the finite generation of K which has been obtained more
recently by Ershov & He [10] and Church, Ershov & Putman [3].

Thus, as done in [6, §2], we start with the following general situation: G is a group, Gabf :=
Gab/Tors(Gab) is its torsion-free abelianization, and K is the kernel of the canonical projection
G→ Gabf . We are interested in the Q[Gabf ]-module

Kab ⊗Q

where the action of Gabf on Kab is induced by the conjugacy action of G on K. The I-adic
filtration of the group algebra Q[Gabf ] induces a filtration on Kab ⊗ Q, and the corresponding
completion is denoted by ÿ�Kab ⊗Q.

In fact, ÿ�Kab ⊗Q has a structure of ◊�Q[Gab]-module, where ◊�Q[Gab] denotes the I-adic completion

of the group algebra Q[Gab]. (Note that ◊�Q[Gab] is isomorphic to ◊�Q[Gabf ], since both groups Gab

and Gabf are abelian and they have the same rationalization.) Similarly, using the action of Gab

on G′ab induced by the conjugacy action of G on G′ = Γ2G, we can consider the completionÿ�G′ab ⊗Q of G′ab ⊗Q with respect to the filtration induced by the I-adic filtration of the group
algebra Q[Gab]. It is proved in [6, Prop. 2.4], under the assumption

(3.1) “G is finitely generated and K/G′ is finite”,



ON THE NON-TRIVIALITY OF THE TORSION SUBGROUP OF THE ABELIANIZED JOHNSON KERNEL 13

that the canonical map

(3.2) ÿ�G′ab ⊗Q −→ÿ�Kab ⊗Q

induced by the inclusion G′ ↪→ K is a filtered ◊�Q[Gab]-linear isomorphism.
To go further, let us recall that any group G has a Malcev completion M(G) and a Malcev

Lie algebra m(G): they are defined respectively as the group-like part and the primitive part

of the complete Hopf algebra ’Q[G], which is the I-adic completion of the group algebra Q[G].

Recall also that the group M(G) and the Lie algebra m(G) inherit filtrations from ’Q[G], and
that they correspond each other through the formal exp and log series. Let m(G)′ be the derived
subalgebra of the complete Lie algebra m(G), and let m(G)′ab be its abelianization. The adjoint
action of m(G) on itself induces an action of the abelian Lie algebra

m(G)/m(G)′ ' Gab ⊗Q

on the vector space m(G)′ab. Hence m(G)′ab has also a structure of Ŝ(Gab ⊗ Q)-module, where

Ŝ(Gab ⊗ Q) is the degree-completion of the symmetric algebra S(Gab ⊗ Q) generated by the
vector space Gab ⊗ Q. According to [8, Prop. 5.4], the canonical map ι : G → M(G) composed

with log : M(G)→ m(G) induces a ◊�Q[Gab]-linear isomorphism

(3.3) ÿ�G′ab ⊗Q −→ m(G)′ab.

Here, the complete algebra ◊�Q[Gab] is identified with Ŝ(Gab ⊗ Q) via the expansion Gab →
Ŝ(Gab ⊗ Q) defined by g 7→ exp(g) =

∑
i≥0 g

⊗i/i!. (Note that (3.3) shifts filtrations by 2 if

m(G)′ab has the filtration induced by that of m(G).)
Assume now the following formality assumption on the group G:

(3.4)
“There is an isomorphism of filtered Lie algebras m(G)→ Ĝr m(G)
which is the identity at the graded level.”

Here Grm(G) is the associated graded of m(G), and Ĝr m(G) denotes its degree-completion. We
recall that Grm(G) is canonically isomorphic to the associated graded (GrG)⊗Q of the lower
central series of G. Thus, under the assumption (3.4), we get an isomorphism

(3.5) m(G)′ab −→ b̂(G)

where

b(G) :=
(

Grm(G)
)′

ab
=

(
Grm(G)

)′[(
Grm(G)

)′
,
(

Grm(G)
)′]

is the infinitesimal Alexander module of G.
Hence, if we assume simultaneously (3.1) and (3.4), we can compose the inverse of the iso-

morphism (3.2) with (3.3) and next (3.5) to get a filtered ◊�Q[Gab]-linear isomorphism

(3.6) ÿ�Kab ⊗Q −→ b̂(G).

We now come back to the specific situation of the Torelli group I of Σ.

Proof of Theorem 3.2. The above discussion applies to the group G := I. Indeed, according to
the fundamental results of Johnson [15, 16, 17], we have K := K in this case and (3.1) is satisfied
for any g ≥ 3. Furthermore, (3.4) is satisfied too when g ≥ 3 according to Hain [23]. Hence, we

get a filtered isomorphism (3.6) between ÿ�Kab ⊗Q and b̂(I).
Similarly to the closed case [6], the most important part of the proof is the following claim:

(3.7) “Kab ⊗Q is a nilpotent Q[Iabf ]-module”

which is proved using the restricted characteristic variety of the Torelli group I. For any finitely-
generated group G, let T0(G) := Hom(Gabf ,C∗) and recall that the restricted characteristic
variety of G is defined by

V(G) :=
{
ρ ∈ T0(G) : Hρ

1 (G;C) 6= 0
}
.

As before, denote by K the kernel of the canonical projection G→ Gabf . It follows from a result
of Dwyer & Fried [9], in the refined form of [38, Cor. 6.2], that V(G) is finite if, and only if,
H1(K;Q) is finite-dimensional. Besides, it is now known from [10, 3] that K is finitely generated
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in genus g ≥ 4 and, so, H1(K;Q) is finite-dimensional. (In the closed case, that H1(ÛK;Q) is
finite-dimensional was proved earlier in [7].) Hence V(I) is finite.

To go further in the proof of the claim (3.7), we next show that any element of V(I) has finite
order in the group T0(I). For that, we closely follow the proof of [6, Theorem 3.1] but with a
small variation at the end of the argument. (This theorem can not be applied directly in our
situation, because Λ3HQ ' Iabf ⊗Q is not irreducible as an Sp(HQ)-module.) Let t ∈ V(I) and
assume that it has infinite order in T0(I). The canonical action of the group Sp(H) ' M/I
on T0(I) leaves V(I) globally invariant. Since V(I) is finite, the stabilizer Dt of t under this
action is a finite-index subgroup of Sp(H). By Borel’s density theorem, Sp(H) is Zariski-dense in
Sp(HC), and so is Dt in Sp(HC). Let Z be the Zariski-closure of the subgroup of T0(I) generated
by t. Since the algebraic group Z is infinite, its dimension is at least 1, and so is the dimension
of its Lie algebra T1Z. Hence, T1Z constitutes in the tangent space T1T0(I) = Hom(Λ3HC,C),
of T0(I) at the trivial character 1, a subspace which is fixed by Dt. Hence, by Zariski-density
of Dt in Sp(HC), we obtain that the Sp(HC)-invariant part of Hom(Λ3HC,C) is not reduced to
zero. But this is not possible, because we have Hom(Λ3HC,C) ' Λ2g−3HC as Sp(HC)-modules
and ΛkHC has no Sp(HC)-invariant part if k is not even. We conclude that any t ∈ V(I) is a
torsion element of the group T0(I). Since V(I) is finite, we can thus find an integer m ≥ 1 such
that

(3.8) ∀t ∈ V(I), tm = 1 ∈ T0(I).

Next, the proof of claim (3.7) is strictly the same as in [6, Proof of Th. A] and we only
highlight the main points for the reader’s convenience. Let I(m) be the preimage by the canonical
projection I → Iabf of the subgroup of Iabf consisting of elements that are divisible by m, and
let K(m) be the kernel of the canonical projection I(m) → I(m)abf . According to [41, Th. B],
all subgroups of I of finite index containing K have the same first Betti numbers for g ≥ 3.
Hence [6, Lemma 3.4] can be applied to deduce that

(i) the inclusion I(m) ↪→ I induces an isomorphism ¤�I(m)′ab ⊗Q→ ◊�I ′ab ⊗Q,
(ii) we have K(m) = K.

By a double application of (3.2), we get a ÷Q[Iab]-linear isomorphism ◊�I ′ab ⊗Q ' ÿ�Kab ⊗Q and

a ⁄�Q[I(m)ab]-linear isomorphism ¤�I(m)′ab ⊗Q ' ¤�K(m)ab ⊗Q. By the statement (ii) above,¤�K(m)ab ⊗Q is the completion mÿ�Kab ⊗Q of Kab ⊗Q defined by the I-adic filtration of Q[I(m)abf ]
via the algebra homomorphism Q[I(m)abf ]→ Q[Iabf ] induced by the inclusion I(m) ↪→ I. But,
if we identify I(m)abf with Iabf as in the proof of [6, Lemma 3.4], that algebra homomorphism
corresponds to the homomorphism Q[ιm] : Q[Iabf ] → Q[Iabf ] induced by the “multiply by m”
map ιm : Iabf → Iabf . Hence, denoting by m(Kab⊗Q) the vector space Kab⊗Q with the structure

of Q[Iabf ]-module defined by the algebra map Q[ιm] : Q[Iabf ]→ Q[Iabf ], we see that mÿ�Kab ⊗Q
is the completion of m(Kab ⊗ Q) with respect to the fitration defined by the I-adic filtration

of Q[Iabf ]. We deduce from the above statement (i) that the I-adic completion ÿ�Kab ⊗Q of the

Q[Iabf ]-module Kab⊗Q is isomorphic to the I-adic completion mÿ�Kab ⊗Q of the Q[Iabf ]-module
m(Kab ⊗Q).

Next, exactly as in the second paragraph of [6, p. 816] (which involves a result of [38] relating
restricted character varieties to supports of Alexander modules), we deduce from (3.8) that
m(Kab⊗Q) is nilpotent as a Q[Iabf ]-module. Thus the canonical map m(Kab⊗Q)→ mÿ�Kab ⊗Q
is injective, and so is the canonical map Kab ⊗ Q →ÿ�Kab ⊗Q. In other words, the filtration of
Kab⊗Q defined by the I-adic filtration of Q[Iabf ] has trivial intersection; moreover, this filtration
must stabilize since Kab⊗Q is finite-dimensional. Thus, we have proved claim (3.7). (Note that
the arguments can be continued a little bit further, as in the closed case, to deduce that V(I) is
actually reduced to the trivial character.)

Since the canonical map Kab ⊗Q→ÿ�Kab ⊗Q is an isomorphism, ÿ�Kab ⊗Q is finite-dimensional
so that, by (3.6), the graded module b(I) is concentrated in finitely many degrees. Therefore,

in fine, there is a filtered ÷Q[Iab]-linear isomorphism

(3.9) z : Kab ⊗Q −→ b(I)
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(which is induced by any isomorphism m(I)→ Ĝr m(I) giving the identity at the graded level).
Moreover, the least integer ` such that bk(I) = 0 for all k ≥ ` corresponds to the least integer
`− 2 such that I`−2 acts trivially on Kab ⊗Q, where I is the augmentation ideal of Q[Iab].

We now follow the same strategy as in [36, Proof of Th. 1.4] but, again, with some variations
with respect to the closed case. We also give more explicit arguments. Since the graded Lie
algebra Grm(I) is generated by its degree 1 part, we have(

Grm(I)
)′

= Gr≥2 m(I).

By [36, Th. 1.2 & Prop. 3.1], the canonical map between Gr4 m(I) ' (Γ4I/Γ5I) ⊗ Q and
(M[4]/M[5])⊗Q is an isomorphism for g ≥ 6; furthermore, [42, Lemma 4.4 & Th. 4.7] implies
that the Lie bracket map Λ2

(
(M[2]/M[3]) ⊗ Q

)
→ (M[4]/M[5]) ⊗ Q is surjective for g ≥ 4:

therefore, the Lie bracket map Λ2 Gr2 m(I) → Gr4 m(I) is surjective for g ≥ 6. It follows that
the degree 4 part of b(I) is trivial. Next, it can be proved by an induction on j ≥ 4 that
bj(I) = 0 using the fact that Grm(G) is generated in degree 1: the argument is general, and
the same as used in [36, Proof of Th. 1.4] for the closed case. (In particular, we deduce that the
integer ` defined in the previous paragraph is equal to 4.) Thus we have obtained that b(I) is
concentrated in degrees 2 and 3:

b(I) = b2(I)⊕ b3(I) = Gr2 m(G)⊕Gr3 m(G).

so that the the isomorphism (3.9) can be viewed as an isomorphism:

z = (z2,z3) : Kab ⊗Q −→
(Γ2I

Γ3I
⊗Q

)
⊕
(Γ3I

Γ4I
⊗Q

)
Let now j : K → Kab ⊗ Q be the canonical homomorphism. The statement of Theorem 3.2

can be rephrased as follows:

(3.10) ker(j) = ker(d) ∩ ker
(
rθ[2,4[

)
.

Since z is an isomorphism, we have ker(j) = ker(z ◦ j); besides, since z arises from a formality
isomorphism of m(I) as in (3.4), we have the equality ker(z ◦ j) =

√
Γ4I in K, where

√
Γ4I

denotes the radical of Γ4I in I. Hence we see that (3.10) is equivalent to

(3.11)
√

Γ4I = ker(d) ∩ ker
(
rθ[2,4[

)
.

That
√

Γ4I is contained in ker(d) ∩ ker
(
rθ[2,4[

)
is clear, since we have Γ3I ⊂ ker(d) and M[4] =

ker
(
rθ[2,4[

)
. To prove the converse, let k ∈ ker(d)∩ker

(
rθ[2,4[

)
. Recall that [I, I] is of finite index

in K: hence, to justify that k ∈
√

Γ4I, we can assume without loss of generality that k ∈ Γ2I.
We know from [30, 31, 23] that

(3.12) (d, τ2) :
Γ2I
Γ3I

⊗Q −→ Q⊕ T2(HQ)

is an isomorphism for any g ≥ 3. Therefore we have k ∈
√

Γ3I: let m ∈ N be such that km ∈ Γ3I.
We have km ∈ M[3] and τ3(km) = mrθ3(k) = 0. But we also know from [35, Prop. 6.3] that τ3
induces an embedding of (Γ3I/Γ4I) ⊗ Q into T3(HQ): therefore, km belongs to

√
Γ4I, and so

does k. This completes the proof of (3.10). �

3.3. Complements. Theorem 3.1 and Theorem 3.2 produce embeddings of the rational abelian-
ized Johnson kernel into well-understood vector spaces, and these theorems will be enough for
our purpose of proving Theorem A. Yet, for the sake of completeness, we now identify the images
and the equivariance property of those embeddings. In the closed case, similar results were given
in [6, Theorem B]. Here, we consider both the closed case and the bordered case.

The homomorphism d : K → Z (resp. Ûd : ÛK → Z) is known to be M-invariant (resp.ıM-invariant). Thus, for the equivariance property of the embeddings of Theorem 3.1 and The-
orem 3.2, we only have to understand how rθ[2,4[ behaves under conjugacy by the mapping class

group. For this, we consider the following analogue of Morita’s extension of τ1 [33]:

(3.13) τθ1 :M−→ Λ3HQ o Sp(HQ), f 7−→
(
r̃θ1(f), f∗

)
Here r̃θ1 denotes the degree 1 part of the map r̃θ : M → T̂ (HQ) defined by (2.12). It follows
from (2.13) that τθ1 is a group homomorphism; its kernel is K. It can be also checked that τθ1
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induces a group homomorphism τθ1 : ıM → Λ3HQ

ω∧HQ o Sp(HQ) whose kernel is ÛK. Besides, the

target group Λ3HQ o Sp(HQ) acts on T2(HQ)⊕ T3(HQ) by

∀(w,ψ) ∈ Λ3HQ×Sp(HQ), ∀(a, b) ∈ T2(HQ)⊕T3(HQ), (w,ψ) ·
(
a, b
)

:= (ψ ·a, ψ ·b+[w,ψ ·a]),

and we also have an induced action of Λ3HQ

ω∧HQ o Sp(HQ) on ÙT2(HQ)⊕ ÙT3(HQ).

Proposition 3.3. The map rθ[2,4[ : K → T2(HQ)⊕T3(HQ) (resp. rθ[2,4[ : ÛK → ÙT2(HQ)⊕ÙT3(HQ))

is equivariant over the group homomorphism τθ1 .

Proof. By the commutativity of (2.23), it suffices to prove the proposition in the bordered case.
A straightforward computation gives

∀f ∈M,∀h ∈ I, rθ(fhf−1) = (ηQ)−1 log
(
%θ(fhf−1)

)
= (ηQ)−1 log

(
(%θ(f)f−1

∗ ) ◦ (f∗%
θ(h)f−1

∗ ) ◦ (%θ(f)f−1
∗ )−1

)
= e[r̃θ(f),−]

(
f∗ · rθ(h))

= f∗r
θ(h) +

[
r̃θ(f), f∗r

θ(h)
]

+
1

2

[
r̃θ(f),

[
r̃θ(f), f∗r

θ(h)
]]

+ · · ·

which implies that

∀f ∈M,∀h ∈ K, rθ[2,4[(fhf
−1) = f∗ · rθ[2,4[(h) +

[
r̃θ1(f), f∗ · rθ2(h)

]
. �

To understand the image of rθ[2,4[ : Kab ⊗ Q → T2(HQ) ⊕ T3(HQ), we need Morita’s trace.

This linear map Trk : Tk(HQ) → Sk(HQ) has been introduced in [32] for any odd k, and it is
defined for k = 3 by

Tr3

(
a

b
c d

e

)
:= 2ω(e, a) bcd+ 2ω(a, d) ecb+ 2ω(d, b) ace+ 2ω(b, e) dca.

A straightforward computation shows that it factorizes to ıTr3 : ÙT3(HQ)→ S3(HQ).

Proposition 3.4. The image of rθ[2,4[ is T2(HQ) ⊕ ker Tr3 (resp., ÙT2(HQ) ⊕ kerıTr3) in the

bordered case (resp., in the closed case).

Proof. By works of Morita [35], we have the following isomorphisms:

M[2]

M[3]
⊗Q τ2−→

'
T2(HQ) and

M[3]

M[4]
⊗Q τ3−→

'
ker(Tr3) ⊂ T3(HQ)

We deduce from these isomorphisms and the injectivity of rθ[2,4[ : M[2]
M[4] ⊗Q→ T2(HQ)⊕T3(HQ)

that

dim
(
T2(HQ)⊕ ker Tr3

)
= dim

(M[2]

M[4]
⊗Q

)
= dim rθ[2,4[(Kab ⊗Q).

So, to conclude that rθ[2,4[(Kab⊗Q) is equal to T2(HQ)⊕ ker Tr3, it is enough to recall from [29,

Prop. 7.3] that the former is contained in the latter. (Note that the triviality of Tr3 ◦τ3, due to
Morita [32, Th. 6.11], is not enough to conclude here.)

The proof in the closed case follows the same lines. �

4. Proofs of Theorem A and Theorem B

In this section, we prove Theorem A and Theorem B. In fact, we give two proofs of Theorem B:
the first one is purely 2-dimensional, while the second one uses 3-dimensional surgery techniques.

4.1. Proof of Theorem A. We first prove Theorem A assuming Theorem B. We only deal

with the case of the bordered surface Σ, since the case of the closed surface ÛΣ is proved exactly
in the same way.

Theorem B asserts the existence of an element ϕ ∈ M[4] such that d(ϕ) = 0 and R(ϕ) 6= 0.
That ϕ belongs to M[4] implies that rθ[2,4[(ϕ) = 0. Then we deduce from Theorem 3.2 that

the class {ϕ} ∈ Kab is a torsion element. Furthermore, we have Rab({ϕ}) = R(ϕ) 6= 0 and we
conclude that {ϕ} 6= 0 ∈ Kab.
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4.2. Proof of Theorem B. We shall exhibit an element ϕ ∈M[3] of the form

ϕ = [i, k], where i ∈ I and k ∈ K.
Recall that I is generated by opposite Dehn twists T−1

c− Tc+ along pairs (c−, c+) of simple closed

curves that cobound a subsurface of Σ: in short, T−1
c− Tc+ is called a bounding pair map. The

above element i will be given in this generating system of I, while k will be given as a product
of separating twists.

It will turn out that ϕ actually belongs to M[4] and satisfies the following:

R(ϕ) =
1

2 a1

a2 a3 a3 a2

a1
mod 1(4.1)

Since ϕ belongs to [M,K], we have d(ϕ) = 0; since we have R(ϕ) = j([a3, [a2, a1]]) and j is
injective, we have R(ϕ) 6= 0. This proves Theorem B for the bordered surface Σ.

The extension Ûϕ of ϕ to ÛΣ satisfies Ûd(Ûϕ) = − 1+2g
12 d(ϕ) since ϕ ∈ M[3]: therefore Ûd(Ûϕ) = 0.

Besides, it follows from (2.26) that R(Ûϕ)=Ûj([a3, [a2, a1]] ⊗ 1) where the homomorphism Ûj is
introduced in Remark 2.13. Since [a3, [a2, a1]] ⊗ 1 is a non-trivial element of L3(A) ⊗ Z2, the

commutativity of (2.28) implies that R(Ûϕ) 6= 0. This proves Theorem B for the closed surface ÛΣ.
The rest of the subsection is devoted to the construction of ϕ ∈M[4] and the proof of (4.1).

4.2.1. The element ϕ of M[4]. Let (c+1 , c
−
1 ) and (c+2 , c

−
2 ) be the pairs of curves in Σ shown in

Figure 2: note that c+i and c−i cobound a subsurface of genus 1. Then consider the following
product of bouding pair maps:

(4.2) i :=
(
T−1

c−1
Tc+1

)
◦
(
T−1

c−2
Tc+2

)−1
= T−1

c−1
Tc−2
∈ I.

Figure 2. The bounding pairs (c+1 , c
−
1 ) and (c+2 , c

−
2 ) in Σ

Besides, let γ1, γ2, γ3, γ4 be the four curves shown in Figure 3: note that each of γ1, γ2 bounds
a subsurface of genus 2, and each of γ3, γ4 bounds a subsurface of genus 1. Then consider the
following product of separating twists:

k := Tγ1 T
−1
γ2 T−1

γ3 Tγ4 ∈ K.

Figure 3. The separating simple closed curves γ1, γ2, γ3 and γ4 in Σ
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Remark 4.1. The above elements i ∈ I and k ∈ K can be alternatively described as products of
“commutators of simply intersecting pairs”, which participate to Putman’s infinite presentation
of the Torelli group [40]. Recall that a commutator of simply intersecting pair is a an element
[Tc, Td] where (c, d) is a pair of simple closed curves meeting at two points such that ω(c, d) = 0.
Then it can be checked that

i =
[
Td, T

−1
c

]
where the curves c = c−2 and d are shown below:

Similary, it can be verified that

k =
[
Te, Td

] [
T−1
f , Td

]
where the curves e = γ1 and f = γ3 are shown below:

�

By construction, ϕ = [i, k] belongs to [I,K] and so to M[3]. Hence we can consider τ3(ϕ),
the value of which can be deduced from the values of τ1(i) and τ2(k). To compute τ1(i), we use
Johnson’s formula [13, Lemma 4.B] for a bounding pair map (or, alternatively, we can use (4.12)
below):

τ1
(
T−1

c−1
Tc+1

)
= −a3 ∧ a1 ∧ (b1 − a2), τ1

(
T−1

c−2
Tc+2

)
= −a3 ∧ a1 ∧ b1

Hence

(4.3) τ1(i) = −a3 ∧ a1 ∧ (b1 − a2) + a3 ∧ a1 ∧ b1 = a1 ∧ a2 ∧ a3 =

a2

a1 a3
.

To compute now τ2(k), we use Morita’s formula [30, Prop. 1.1] for a separating twist (or,
alternatively, we can specialize formula (4.7) below in degree 2):

τ2(Tγ1) =
1

2
(a1∧b1+a3∧b3) (a1∧b1+a3∧b3), τ2(Tγ4) =

1

2
(a1∧(b1−a2)) (a1∧(b1−a2))

τ2(Tγ2) =
1

2
(a1∧(b1−a2)+a3∧b3) (a1∧(b1−a2)+a3∧b3), τ2(Tγ3) =

1

2
(a1∧b1) (a1∧b1)

Hence

(4.4) τ2(k) =
1

2

b3

a3 b3

a3

+

b3

a3 b1

a1

− 1

2

b3

a3 b3

a3

−
b3

a3 b1 − a2

a1

=

b3

a3 a2

a1

.

We deduce that

(4.5) τ3(ϕ) = [τ1(i), τ2(k)] =

 a2

a1 a3
,

b3

a3 a2

a1
 =

a1

a2 a3 a2

a1
= 0

where the last identity follows from the AS relation. We conclude that ϕ ∈M[4].
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4.2.2. Beginning of the computation of R(ϕ). Since ϕ belongs to M[4], R(ϕ) is simply the
reduction of τ4(ϕ) modulo 1. To compute this congruence class, we will use the infinitesimal
Dehn–Nielsen representation rθ described in §2.2. We have

rθ(ϕ) = rθ([i, k]) =
[
rθ(i), rθ(k)

]
?

where [−,−]? denotes the commutator for the BCH product ? on T (HQ). The latter is explicitly
given by

[u, v]? = u ? v ? (−u) ? (−v) = [u, v] +
1

2
[u, [u, v]]− 1

2
[v, [v, u]] + (Lie brackets of length ≥ 4)

for any u, v ∈ T (HQ). Since u := rθ(i) and v := rθ(k) start in degrees 1 and 2, respectively, we
deduce that

rθ4(ϕ) =
[
rθ1(i), rθ3(k)

]
+
[
rθ2(i), rθ2(k)

]
+

1

2

[
rθ1(i),

[
rθ1(i), rθ2(k)

]]
=

[
τ1(i), rθ3(k)

]
+
[
rθ2(i), τ2(k)

]
+

1

2

[
τ1(i),

[
τ1(i), τ2(k)

]]
and, using (4.5), we obtain

(4.6) rθ4(ϕ) =
[
τ1(i), rθ3(k)

]
+
[
rθ2(i), τ2(k)

]
.

Hence, we are led to compute rθ2(i) and rθ3(k) and, for that, we will use the logansion given in
Example 2.4. In fact, since we are only interested in the value of rθ4(ϕ) modulo 1, we will only
determine the classes of rθ2(i) and rθ3(k) modulo Z-linear combinations of trees.

4.2.3. Computation of rθ3(k). The map rθ[2,3] is a group homomorphism on K =M[2] (see [27];

this follows from Lemma 2.6 with k := 2). In particular, we have

rθ3(k) = rθ3(Tγ1)− rθ3(Tγ2)− rθ3(Tγ3) + rθ3(Tγ4).

Next, we shall compute rθ3(Tγi) for each i ∈ {1, 2, 3, 4} using the following formula, which is
deduced in [25, eq. (5.4)] from the main result of [24]:

For any separating simple closed curve γ in Σ, and any representative γ̃ ∈ π,
we have

(4.7) rθ(Tγ) =
1

2
θ(γ̃) θ(γ̃) ∈ T̂ (HQ).

We orient and base the curves γi as shown in Figure 3 to get the following lifts:

(4.8) γ̃1 = [α3, β
−1
3 ]β2[α1, β

−1
1 ]β−1

2 , γ̃4 = [α2β2β
−1
1 , α−1

1 ][α−1
1 , β2],

(4.9) γ̃2 = [α3, β
−1
3 ][α2β2β

−1
1 , α−1

1 ]][α−1
1 , β2], γ̃3 = [α1, β

−1
1 ].

Then, a direct computation gives

θ(γ̃1) = −
a1 b1

−
a3 b3

+

a1 b1 b2
+ (deg ≥ 4)

θ(γ̃2) = −
a1 b1

+

a1 a2

−
a3 b3

+
b1 a1 a1

− 1

2

a2 a1 a1

− 1

2

a1 a2 a2

+
1

2

a1 b1 a2

+

a1 b1 b2
− 1

2

b2 a2 a1

−
a1 b2 a2

+ (deg ≥ 4)

θ(γ̃3) = −
a1 b1

+ (deg ≥ 4)

θ(γ̃4) = −
a1 b1

+

a1 a2

+
b1 a1 a1

− 1

2

a2 a1 a1

− 1

2

a1 a2 a2

+
1

2

a1 b1 a2

+

a1 b1 b2
− 1

2

b2 a2 a1

−
a1 b2 a2

+ (deg ≥ 4)

This computation can be performed either by hand or by using the SageMath code given in
Appendix A. For instance, θ(γ̃4) is computed and displayed with the following command lines:
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1 g4=theta(comm(’a2+b2+b1-’,’a1-’)+comm(’a1-’,’b2+’))

2 display(g4)

We observe that rθ3(Tγ3) is trivial, since θ3(γ̃3) = 0, and that rθ3(Tγ1) is a Z-linear combination
of trees, since the above formula for θ3(γ̃1) = 0 shows no fraction. Besides, we remark that
θ2(γ̃2) = θ2(γ̃4)− [a3, b3] and θ3(γ̃2) = θ3(γ̃4); therefore we have

rθ3(k) ≡ −rθ3(Tγ2) + rθ3(Tγ4)

= −θ2(γ̃2) θ3(γ̃2) + θ2(γ̃4) θ3(γ̃4)

= [a3, b3] θ3(γ̃2)

≡ 1

2
[a3, b3]

(
[[a2, a1], a1] + [[a1, a2], a2] + [[b1, a1], a2] + [[b2, a2], a1]

)
(4.10)

where the symbol “≡” stands for a congruence modulo Z-linear combinations of trees.

4.2.4. Computation of rθ2(i). Lemma 2.6 with k := 1 implies that

(4.11) rθ2(i) = rθ2(P1)− rθ2(P2)− 1

2
[τ1(P1), τ1(P2)] where Pi := T−1

c−i
Tc+i

.

We need the following formulas for bounding pair maps.

Proposition 4.2. Let γ and δ be elements of π representing two simple closed curves that
cobound a subsurface of Σ, and set c := γ−1δ. Then we have

(4.12) rθ1(TγT
−1
δ ) = −[γ] [c]

and

(4.13) rθ2(TγT
−1
δ ) = −1

2
[c] [c]− θ2(γ) [c]− [γ] θ3(c)

where

[γ] ∈ π

Γ2π
' H and [c] ∈ Γ2π

Γ3π
' L2

are the leading terms of θ(γ) = [γ]+θ2(γ)+· · · ∈ L̂Q and θ(c) = [c]+θ3(c)+· · · ∈ L̂Q, respectively.

Proof. There is also a version of (4.7) for the Dehn twist Tγ along any simple closed curve γ.
Of course, Tγ does not belong to the Torelli group if γ is not separating , but the automorphism

%θ(Tγ) of L̂Q still has a logarithm and we can consider

rθ(Tγ) := (ηQ)−1
(

log %θ(Tγ)
)
∈ T̂ (HQ)

by allowing tree diagrams to have no trivalent vertices and derivations to be of degree 0. (Hence
the degree 0 part of T (HQ) is canonically isomorphic to S2(HQ).) This generalization of for-
mula (4.7) is proved exactly as in [25, eq. (5.4)] using the main result of [24].

Since Tγ and Tδ commute, the automorphisms %θ(Tγ) and %θ(Tδ) commute, and so do their

logarithms. Hence we have [rθ(Tγ), rθ(Tδ)] = 0, so that the BCH formula reduces to rθ(TγT
−1
δ ) =

rθ(Tγ) + rθ(T−1
δ ), and we deduce that

rθ(TγT
−1
δ ) =

1

2
θ(γ) θ(γ)− 1

2
θ(δ) θ(δ).

Besides, we have

θ(δ) = θ(γ) ? θ(c) = θ(γ) + θ(c) +
1

2

[
θ(γ), θ(c)

]
+ (deg ≥ 4)

since θ(c) starts in degree 2. Thus we obtain

rθ(TγT
−1
δ ) = −1

2
θ(c) θ(c)− θ(γ) θ(c) + (deg ≥ 3)

since we have θ(γ)
[
θ(γ), θ(c)

]
= 0 by the AS relation. In particular, we get

rθ1(TγT
−1
δ ) = −θ1(γ) θ2(c)

and

rθ2(TγT
−1
δ ) = −1

2
θ2(c) θ2(c)− θ2(γ) θ2(c)− θ1(γ) θ3(c). �

We now apply (4.13) to compute rθ2(P1) and rθ2(P2) modulo Z-linear combinations of trees:
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(1) For P1, we consider γ := α3 and c := β3γ̃
−1
4 β−1

3 where γ̃4 has been defined at (4.9).
Then, a direct computation (using the SageMath code of Appendix A) gives

θ(γ) =

a3

− 1

2

a3 b3
− 1

2

a1 b1 a3

− 1

2

a2 b2 a3

+
1

12

a3 b3 b3
+ (deg ≥ 4),

θ(c) =

a1 b1
−

a1 a2

− 1

2

a1 a2 a1

+

a1 b1 a1

+
1

2

a1 a2 a2

+
1

2

a2 b2 a1

− 1

2

a1 b1 a2

−
a1 b1 x

+

a1 a2 x

+ (deg ≥ 4) with x := b2 + b3.

Hence we get

rθ2(P1) =

(
− 1

2

b1

a1 b1

a1

− 1

2

a2

a1 a2

a1

+

a2

a1 b1

a1 )
+

(
1

2

b3

a3 b1

a1

− 1

2

b3

a3 a2

a1 )

+

(
1

2

a2

a1 a3

a1

−
b1

a1 a3

a1

− 1

2

a2

a1 a3

a2

− 1

2

b2

a2 a3

a1

+
1

2

b1

a1 a3

a2

+

b1

a1 a3

x

−
a2

a1 a3

x )

≡ 1

2

( a1

a2 a3

a1 + a2

+

a1

b1 a3

a2

+

a2

b2 a3

a1

+

b3

a3 b1 + a2

a1

+

a1

b1 a1

b1

+

a1

a2 a1

a2 )

where the symbol “≡” stands for a congruence modulo Z-linear combinations of trees.
(2) For P2, we consider now γ := α3 and c := (β3β2)γ̃−1

3 (β3β2)−1 where γ̃3 has been defined
at (4.8). Then, a direct computation (using the SageMath code of Appendix A) gives

θ(γ) =

a3

− 1

2

a3 b3
− 1

2

a1 b1 a3

− 1

2

a2 b2 a3

+
1

12

a3 b3 b3
+ (deg ≥ 4),

θ(c) =

a1 b1
−

a1 b1 x

+ (deg ≥ 4) with x := b2 + b3.

Hence we get

rθ2(P2) = −1

2

b1

a1 b1

a1

+
1

2

b3

a3 b1

a1

+

b1

a1 a3

x

≡ 1

2

( b3

a3 b1

a1

+

b1

a1 b1

a1 )
.

We now insert into (4.11) the above values of rθ2(Pi) to get

rθ2(i) ≡ 1

2

( a1

a2 a3

a1 + a2

+

a1

b1 a3

a2

+

a2

b2 a3

a1

+

b3

a3 a2

a1

+

a1

a2 a1

a2 )

−1

2

[ a3

a1 b1
−

a3

a1 a2
,

a3

a1 b1

]
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≡ 1

2

( a1

a2 a3

a1 + a2

+

a1

b1 a3

a2

+

a2

b2 + a3 a3

a1

+

b3

a3 a2

a1

+

a1

a2 a1

a2 )
(4.14)

4.2.5. End of the computation of R(ϕ). It follows from (4.3) and (4.10) that

[
τ1(i), rθ3(k)

]
≡ 1

2

[ a2

a1 a3
,
a3

b3 a1 a1

a2
+

a3

b3 a2 a2

a1
+

a3

b3 a2 a1

b1

+
a3

b3 a1 a2

b2

]

≡ 1

2

(
a1

a2 a3 a1 a1

a2
+

a1

a2 a3 a2 a2

a1
+

a1

a2 a3 a2 a1

b1

+
a1

a2 a3 a1 a2

b2

+
a3

b3 a2 a1 a2

a3
+

a3

b3 a1 a2 a3

a1

)
.

Besides, it follows from (4.4) and (4.14) that

[
rθ2(i), τ2(k)

]
≡ 1

2

[ a1
a2 a3

a1 + a2

+

a1

b1 a3

a2

+

a2

b2 + a3 a3

a1

,

b3

a3 a2

a1 ]

≡ 1

2

(
a2

a1 a1 a3 a1

a2
+

a2

a1 a2 a3 a1

a2
+

b1

a1 a2 a3 a1

a2
+

a3

b3 a2 a1 a2

a3

+
b2

a2 a1 a3 a1

a2
+

a3

a2 a1 a3 a1

a2
+

a1

a2 a3 a2 a1

a3
+

b3

a3 a1 a2 a1

a3

)
.

We deduce from (4.6) that

rθ4(ϕ) ≡ 1

2

(
a3

a2 a1 a3 a1

a2
+

a1

a2 a3 a2 a1

a3

)
≡ 1

2 a1

a2 a3 a3 a1

a2

where the last congruence follows from the IHX relation. Thus we have proved (4.1).

4.3. Another proof of Theorem B. Our second proof of Theorem B is based on 3-dimensional
topology and, to be more specific, on the clasper calculus in homology cylinders. It is inspired
by the arguments of Nozaki, Sato and Suzuki [37] to prove Theorem A in the closed case. (See
[37, §5.4] in connection to this.) But, in contrast to [37], our arguments do not involve any
computation of the LMO homomorphism.

To be more specific, still assuming that the surface Σ has genus g ≥ 3, we will show here the
existence of an element ϕ′ ∈ Γ3I of the form

ϕ′ = [ϕ1, [ϕ2, ϕ3]]

where ϕ1, ϕ2, ϕ3 ∈ I will be required to satisfy certain properties. It will follow from these
properties that ϕ′ belongs to M[4] and satisfies

R(ϕ′) =
1

2 a3

a2 a1 a1 a2

a3
mod 1.(4.15)

Then, Theorem B is proved with ϕ′ exactly as we did in §4.2 with the first element ϕ.
Let C := C(Σ) be the monoid of homology cobordisms over Σ: the reader is refered to [22] for

a survey. Recall that the mapping class group embeds into this monoid via the mapping cylinder
construction

c :M−→ C
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and that most of the constructions outlined in §2.2, §2.3 forM can be extended to C. Thus, we
have at our disposal the Johnson filtration

(4.16) C ⊃ C[1]︸︷︷︸
IC :=

⊃ C[2]︸︷︷︸
KC :=

⊃ · · · ⊃ C[k] ⊃ C[k + 1] ⊃ · · ·

and, for every k ≥ 1, the k-th Johnson homomorphism τk : C[k] → Dk(H) which, by work
of Garoufalidis and Levine [11], is surjective. The submonoid C[1] = IC consists of homology

cylinders over Σ, and the infinitesimal Dehn–Nielsen representation rθ : IC → T̂ (HQ) is defined
on this monoid. Besides, the map R◦ : K → T4(HQ)/T4(H) that has been defined in Remark 2.9
as a variation of R extends to KC by the same formula (2.20), and the same arguments show
that the resulting map

R◦ : KC −→ T4(HQ)

T4(H)

is a monoid homomorphism.
To go further, we shall need the Yk-equivalence relations on C that have been introduced by

Goussarov [12] and Habiro [20]. Recall that two cobordisms M,M ′ ∈ C are Yk-equivalent if there
is a (compact, connected, oriented) surface S ⊂ int(M) with one boundary component, and an
element s ∈ ΓkI(S), such that M ′ is obtained by cutting open M along S and gluing it back
with s. We need the following facts about these equivalence relations (see the survey paper [22],
and references therein):

• For every k ≥ 1, the Yk-equivalence relation is generated by surgeries along connected
graph claspers with k nodes (using the terminology of [20]).

• Denoting by YkIC the Yk-equivalence class of the trivial cylinder U := Σ× [−1,+1], we
obtain a decreasing sequence of submonoids

IC = Y1IC ⊃ Y2IC ⊃ · · · ⊃ YkIC ⊃ Yk+1IC ⊃ · · ·
which is called the Y -filtration and is smaller than the Johnson filtration (4.16).

• For every k ≥ 1, the quotient monoid IC/Yk is a group and, for all `, `′ ≥ 1, we have[Y`IC
Yk

,
Y`′IC
Yk

]
⊂ Y`+`′IC

Yk
.

• The associated graded of the Y -filtration, i.e. the direct sum of abelian groups

GrY IC :=

+∞⊕
k=1

YkIC
Yk+1

,

is a graded Lie ring whose Lie bracket is induced by group commutators.
• The graded Lie ring GrY IC can be “approximated” by a space of Jacobi diagrams in

the following way. A Jacobi diagram is a finite and unitrivalent graph, whose trivalent
vertices are oriented and whose univalent vertices are colored by the finite set

{1+, . . . , g+} ∪ {1−, . . . , g−}.
The degree of a Jacobi diagram is the number of its trivalent vertices. Let AY be the
graded abelian group generated by Jacobi diagrams, subject to the AS and IHX relations
as presented in §2.1. Equipped with the multiplication ? defined by

D ? E :=
∑(

all possible ways of gluing some of the i+-vertices of D

with some of the i−-vertices of E, for all i ∈ {1, . . . , g}

)
,

the graded abelian group AY is a graded ring. Furthermore, equipped with the bracket
[D,E]? := D?E−E?D, the subgroup AY,c of AY spanned by connected Jacobi diagrams
is a graded Lie ring. Then, there is a homomorphism of graded Lie rings [11, 2]

(4.17) ψ : AY,c −→ GrY IC
defined by ψ(D) := (−1)χ(D) ·

(
UD mod Yk+1

)
for any connected Jacobi diagram D of

degree k, where χ(D) is the Euler characteristic of D and D is a graph clasper in the
trivial cylinder U “realizing” D: in particular, every univalent vertex of D is “realized”
by a leaf of D which is a push-off (in the interior of U) of the framed curve αi ⊂ Σ×{−1}
(resp. βi ⊂ Σ× {+1}) if the color of that vertex is i− (resp. i+).

We can now prove the following.
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Lemma 4.3. The monoid homomorphism R◦ : KC → T4(HQ)/T4(H) factorizes to a group
homomorphism R◦ : KC/Y4 → T4(HQ)/T4(H).

Proof. Let M ∈ KC and let G ⊂ int(M) be a connected graph clasper with 4 nodes. Since the
Y4-equivalence is generated by surgeries of the type M  MG, it is enough to prove that

(4.18) R◦(MG) = R◦(M).

Let N+ be a collar neighborhood of the “top” boundary of the cobordism M . Since M is a
homology cobordism, each leaf of G is homologous to a framed knot contained in N+. Hence, by
standard techniques of clasper calculus, we can find another connected graph clasper G′ ⊂ N+

with 4 nodes such that

(4.19) MG ∼Y5 MG′ .

Since the map R◦ is determined by rθ[2,4], it is determined by the action of KC on the 5-th

nilpotent quotient π/Γ6π of π. Hence R◦ factorizes through the Y5-equivalence, and we deduce
from (4.19) that

R◦(MG) = R◦(MG′).

Identify N+ with the trivial cylinder U using the “top” boundary parametrization of M : then
G′ ⊂ N+ corresponds to yet another graph clasper G′′ ⊂ U with 4 nodes. Thus we obtain

R◦(MG) = R◦(M ◦ UG′′) = R◦(M) +R◦(UG′′).

Besides, R◦(UG′′) = (τ4(UG′′) mod 1) is trivial, because τ4(UG′′) ∈ T4(HQ) is 0 if the Jacobi
diagram G′′ underlying G′′ is looped and is equal to G′′ ∈ T4(H) otherwise [11]. Thus, we
conclude to (4.18). �

Consider the following Jacobi diagrams of degree 1:

T1 :=
1−

2− 3−
, T2 :=

1−

1+ 2−
, T3 :=

2−

2+ 3−
∈ AY1 ,

and note that [
T1,
[
T2, T3

]
?

]
?

=
3−

2− 1− 2−

3−︸ ︷︷ ︸
T :=

∈ AY3 .

Consider now a graph clasper in the trivial cylinder U = Σ× [−1,+1] of the following form:

T :=

α′′3

α′′2

α′3

α′2

α1

where α1 denotes a push-off of the framed curve α1 ⊂ Σ×{−1} and, for i ∈ {2, 3}, α′i, α′′i denote
parallel copies of a push-off of the framed curve αi ⊂ Σ× {−1}; note that

τ3(UT ) = T |i− 7→αi = 0 (by the AS relation)

so that UT belongs to C[4]. Consider also a graph clasper in U of the following form:

S :=
α3

α2

α1

By a result of Conant, Schneiderman and Teichner [5, proof of Lemma 33], the homology cylinders
UT and US are, up to surgeries along graph claspers with 4 nodes, related by a 4-dimensional
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homology cobordism. Since R◦ is invariant under 4-dimensional homology cobordism (because
rθ is so) and since R◦ is invariant under the Y4-equivalence too (by Lemma 4.3), we deduce that

(4.20) R◦(UT ) = R◦(US).

It follows also from [5, §3.8] (or, alternatively, from [25, Th. B] which is more general) that

(4.21) τ4(US) =
1

2 a3

a2 a1 a1 a2

a3
.

Besides, since the map (4.17) is a Lie homomorphism and T is a “realization” of T , we have[
ψ1(T1),

[
ψ1(T2), ψ1(T3)

]]
= ψ3(T ) = −

(
UT mod Y4

)
.

Next, since c : I/Γ2I → IC/Y2IC is an isomorphism in genus g ≥ 3 [28], we can find ϕi ∈ I
such that

(4.22) ψ1(Ti) =
(
c(ϕi) mod Y2

)
.

So, the mapping cylinder of the inverse of ϕ′ := [ϕ1, [ϕ2, ϕ3]] ∈ Γ3 I is Y4-equivalent to UT : in
particular, we have τ3(ϕ′) = −τ3(UT ) = 0 so that ϕ′ ∈M[4]. Finally, thanks to Lemma 4.3, we
conclude from (4.20) and (4.21) that

R◦(ϕ
′) = R◦(UT ) =

1

2 a3

a2 a1 a1 a2

a3
mod 1.

Remark 4.4. We can give an explicit example of an element ϕi ∈ I satisfying (4.22) for
i ∈ {1, 2, 3}, which leads to an explicit formula for ϕ′ = [ϕ1, [ϕ2, ϕ3]]. Indeed, according to [28,
Th. 1.3], the property (4.22) is equivalent to the double condition

(4.23) τ1(ϕi) = τ1(ψ(Ti)) ∈ Λ3H and β(ϕi) = β(ψ(Ti)) ∈ B≤3,

where β denotes the Birman–Craggs homomorphism with values in the space B≤3 of cubic
boolean functions on the space Spin(Σ) of spin structures on Σ. By [28, Lemma 4.22] and [28,
Lemma 4.23], respectively, we have

τ1(ψ(T1)) =

a2

a1 a3
, τ1(ψ(T2)) =

b1

a1 a2
, τ1(ψ(T3)) =

b2

a2 a3

and
β(ψ(T1)) = a2 · a1 · a3, β(ψ(T2)) = b1 · a1 · a2, β(ψ(T3)) = b2 · a2 · a3.

Here, identifying Spin(Σ) with the space Q of quadratic functions H ⊗ Z2 → Z2 whose polar
form is the mod 2 intersection form of the surface, we associate to any z ∈ H the affine boolean
map z : Q → Z2 defined by z(q) := q(z ⊗ 1). Thus, using [13, Lemma 4.B] and [14, §7], we see
that the following instances of ϕ1, ϕ2, ϕ3 satisfy (4.23):

ϕ1 := i (Td′Td′′), ϕ2 :=
(
Te+T

−1
e−

)
Tf , ϕ3 :=

(
Tu+T−1

u−

)
Tv

Here i is the product of two bounding pair maps defined by (4.2) and Td′ , Td′′ are the separating
twists along the curves d′, d′′ given by Figure 4, thus defining ϕ1; also, ϕ2 and ϕ3 are defined
as products of a bounding pair map and a separating twist, whose curves are also shown in
Figure 4. �

4.4. Complements. We conclude by discussing the size of the torsion subgroup of the abelian-
ized Johnson kernel. For that, we will give a lower bound on the size of the image of the map
Rab : Kab → T4(HQ)/T4(H):

(4.24) |Tors(Kab)| ≥
∣∣Rab

(
Tors(Kab)

)∣∣
Note that the above inequality may be strict. Indeed we have the inclusions of groups

{0} ⊂ Γ4I · K′

K′
⊂
√

Γ4I
K′︸ ︷︷ ︸

=Tors(Kab)

⊂ M[4]

K′
⊂ Kab

where the description of Tors
(
Kab

)
has been justified just after (3.10). Since τ4 maps Γ4I to

T4(H) ⊂ T4(HQ), we deduce from Lemma 2.10 that Rab vanishes on
(
Γ4I · K′

)
/K′. Hence, if
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Figure 4. The curves defining instances of ϕ1, ϕ2 and ϕ3

Γ4I is not included in K′ (which the authors ignore), then Rab is not enough to detect all the
torsion of Kab.

Remark 4.5. Actually, the authors do not even know whether Rab has only 2-torsion. �

To obtain a lower bound on the size of the image of Rab, we use Lemma 2.10, the M-
equivariance property of τ4 and formula (4.1):

(4.25)
∣∣Rab

(
Tors(Kab)

)∣∣ ≥ ∣∣Rab

(
〈ϕ〉M)

)∣∣ =
∣∣$τ4(〈ϕ〉M)

)∣∣ =
∣∣〈[[a1, a2], a3]〉Sp(H)

∣∣
Here 〈ϕ〉M is the M-submodule of Kab generated by {ϕ} and

〈
[[a1, a2], a3]〉Sp(H) is the Sp(H)-

submodule of L3 ⊗ Z2 generated by [[a1, a2], a3]. (Here and in the sequel, we simply denote by
x the element x⊗ 1 of L3 ⊗ Z2 defined by any x ∈ L3.)

Lemma 4.6. We have a split short exact sequence of Sp(H)-modules

0 // H ⊗ Z2

[ω,−]
// L3 ⊗ Z2

p
//

ϛ

gg
ÛL3 ⊗ Z2

// 0,

where p is the canonical projection and ϛ : L3 ⊗ Z2 → H ⊗ Z2 is defined by ϛ([[a, b], c]) =
ω(b, c) a+ ω(a, c) b.

Proof. By definition of ÛL, we have a short exact sequence 0 → H → L3 → ÛL3 → 0 and, sinceÛL3 is torsion-free, this sequence remains exact after tensorization with Z2. Regarding L3 as a
quotient of H⊗3, we easily verify that ϛ is well-defined. Besides, we have ϛ([ω, h]) = h for all
h ∈ H, showing that the short exact sequence is split. �

Lemma 4.7. With the notations of Lemma 4.6 and for g ≥ 3, we have kerϛ =
〈
[[a1, a2], a3]〉Sp(H).

Proof. Set S :=
〈
[[a1, a2], a3]〉Sp(H). The Sp(H)-equivariance of ϛ implies that S ⊂ kerϛ. To

prove the converse inclusion, we consider the projection q : L3 ⊗ Z2 → kerϛ corresponding to
the split short exact sequence of Lemma 4.7; specifically, we have

q(x) = x+ [ω,ϛ(x)], ∀x ∈ H.
Let Z = {a1, . . . , ag, b1, . . . , bg} and, for all z, z′ ∈ Z, let us write z ⊥ z′ if we have {z, z′} =
{ai, bi} for some i. Clearly, for any z, z′, z′′ ∈ Z with z′ 6= z′′, we have

q([[z′, z′′], z]) =

 [[z′, z′′], z] if (z 6⊥ z′ and z 6⊥ z′′) (i)
[[z′, z′′], z] + [ω, z′′] if z ⊥ z′ (ii)
[[z′, z′′], z] + [ω, z′] if z ⊥ z′′ (iii).

Since L3 ⊗ Z2 is generated by the elements [[z′, z′′], z], for all z, z′, z′′ ∈ Z with z′ 6= z′′, we
deduce that kerϛ is generated by the above elements of types (i), (ii) and (iii). Hence, we are
reduced to show that any element of type (i) and any element of type (ii) belong to S. For that,
we will use the following elements of Sp(H):

• for x ∈ H, Tx is the transvection defined by Tx(h) = h+ ω(x, h)x;
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• for any r, s ∈ {1, . . . , g} with r 6= s, Ers exchanges ar (resp. br) with as (resp. bs) and
fixes all other elements of Z;

• for each r ∈ {1, . . . , g}, Fr maps ar (resp. br) to −br (resp. ar) and fixes all other elements
of Z.

We start by considering the elements of type (i). They can be of the following forms:

[[ai, aj ], ak] with (i, j, k pairwise disjoint) or (k = j and i 6= j),

[[ai, bj ], ak] with (i, j, k pairwise disjoint) or (k = i and i 6= j) or (j = i and k 6= i),

[[bi, bj ], ak] with (i, j, k pairwise disjoint),

[[bi, bj ], bk] with (i, j, k pairwise disjoint) or (k = j and i 6= j),

[[bi, aj ], bk] with (i, j, k pairwise disjoint) or (k = i and i 6= j) or (j = i and k 6= i),

[[ai, aj ], bk] with (i, j, k pairwise disjoint).

The last three forms can be derived from the first three forms by applying symplectic transfor-
mations of type Fr: hence it suffices to consider the first three forms. We have

Tb1 · [[a1, a2], a3] = [[a1, a2], a3] + [[b1, a2], a3]

and Tb2 · [[b1, a2], a3] = [[b1, a2], a3] + [[b1, b2], a3],

hence we obtain that [[b1, a2], a3] ∈ S and [[b1, b2], a3] ∈ S. By using the transformations of
type Ers, we deduce that all [[ai, aj ], ak], [[ai, bj ], ak] and [[bi, bj ], ak] with i, j, k pairwise disjoint,
belong to S. Furthermore, we have

Ta2+a3 · [[a1, a2], b3] = [[a1, a2], b3] + [[a1, a2], a2] + [[a1, a2], a3]

and F1 · [[a1, a2], a2] = [[b1, a2], a2],

hence we obtain that [[a1, a2], a2] ∈ S and [[b1, a2], a2] ∈ S. By using the transformations of
type Ers, we deduce that [[ai, aj ], aj ] ∈ S and [[ai, bj ], ai] ∈ S for all i 6= j. Finally, we have

Tb1 · [[a1, a2], a1] = [[a1, a2], a1] + [[b1, a2], b1] + [[b1, a2], a1] + [[a1, a2], b1]︸ ︷︷ ︸
=[[a1,b1],a2]

and we deduce that [[a1, b1], a2] ∈ S: hence we have [[ai, bi], ak] ∈ S for all i 6= k. Thus we have
checked that all elements of type (i) belong to S.

We now consider the elements of type (ii). They can be of the following forms:

q([[ai, bi], bi]), q([[bi, aj ], ai]) with i 6= j, q([[ai, aj ], bi]) with i 6= j,

q([[bi, ai], ai]), q([[ai, bj ], bi]) with i 6= j, q([[bi, bj ], ai]) with i 6= j.

The last three forms can be derived from the first three forms by applying symplectic transfor-
mations of type Fr: hence it suffices to consider the first three forms. In the sequel, we denote
by ≡ the congruence modulo S. First, note that

q([[ai, bi], bi]) = [[ai, bi], bi] + [ω, bi] ≡ [[ai, bi], bi] + [[ai, bi], bi] = 0

where the congruence follows from the consideration of elements of type (i). Second, we have

q([[bi, aj ], ai]) = [[bi, aj ], ai] + [ω, aj ] ≡ [[bi, aj ], ai] + [[aj , bj ], aj ].

Let Gij be the symplectic transformation of H that maps ai to ai + aj , bi to bi, aj to −aj , bj to
bi − bj , and fixes all other elements of S. Observe that

Gij · [[aj , bj ], ai] = [[aj , bi + bj ], ai + aj ]

= [[aj , bi], ai] + [[aj , bi], aj ] + [[aj , bj ], ai] + [[aj , bj ], aj ]

≡ [[aj , bi], ai] + [[aj , bj ], aj ]

where the congruence follows from the consideration of elements of type (i). Thus we deduce
that q([[bi, aj ], ai]) ∈ S. Third, we have

q([[ai, aj ], bi]) = [[ai, aj ], bi] + [ω, aj ] ≡ [[ai, aj ], bi] + [[aj , bj ], aj ] ≡ [[aj , bi], ai] + [[aj , bj ], aj ]

where the last conguence follows from the Jacobi identity: hence we are back to the second form
of elements of type (ii). �

We can now conclude by giving lower bounds on the sizes of the torsion parts of the abelianized
Johnson kernels.
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Proposition 4.8. Assume that g ≥ 6. The cardinality of Tors(Kab) is at least 2
8
3 (g3−g), and

the cardinality of Tors(ÛKab) is at least 2
1
3 (g3−4g).

Proof. We deduce from Lemma 4.7 that
〈
[[a1, a2], a3]〉Sp(H) is isomorphic to (L3(H)/H)⊗Z2 as

a Z2-vector space. Hence, thanks to (4.24) and (4.25), we obtain the lower bound

|Tors(Kab)| ≥ 2rkL3(H)−rkH

in the bordered case. In the closed case, it follows from diagram (2.26) and Remark 2.13 that∣∣∣Tors(ÛKab)
∣∣∣ ≥ 2rkL3(A)−rk(A)

where A is the quotient H/〈b1, . . . , bg〉. �

Remark 4.9. It is expected that the lower bounds of Proposition 4.8 are far from optimal (at
least in the closed case). �

Appendix A. Computation of the symplectic logansion

1 # Choose the genus and the nilpotency class

2

3 g=3

4 N=3

5

6

7 # The free Lie algebra on 2g generators a1 ,...,ag,b1 ,...,bg of nilpotency class N

8

9 L=LieAlgebra(QQ ,2*g,step=N)

10 a=[L.gen(i) for i in range(g)]

11 b=[L.gen(i+g) for i in range(g)]

12

13

14 # Values of the symplectic logansion "theta" up to order N

15

16 theta_a = [ a[i] - (1/2) * L[a[i],b[i]]

17 + (1/12) * L[L[a[i],b[i]],b[i]] -(1/24)* L[a[i],L[a[i],L[a[i],b[i]]]]

18 - (1/2) * L[ sum( L[a[j],b[j]] for j in range(i) ) , a[i] ]

19 + (1/4) * L[ sum( L[a[j],b[j]] for j in range(i) ) , L[a[i],b[i]] ]

20 for i in range(g) ]

21

22 theta_b = [ b[i] - (1/2) * L[a[i],b[i]] + (1/4) * L[L[a[i],b[i]],b[i]]

23 + (1/12) * L[a[i],L[a[i],b[i]]] -(1/24)* L[L[L[a[i],b[i]],b[i]],b[i]]

24 + (1/2) * L[ b[i], sum( L[a[j],b[j]] for j in range(i) ) ]

25 + (1/4) * L[ sum( L[a[j],b[j]] for j in range(i) ) , L[a[i],b[i]] ]

26 for i in range(g) ]

27

28

29 # Computation of theta from a string such a ’a1+b2-a1-’ which encodes an element

of the fundamental group

30

31 def theta(lis):

32 res = L(0)

33 for j in range(len(lis)/3):

34 index = int(lis[3*j+1]) -1

35 if [lis [3*j],lis [3*j+2]]==[ ’a’,’+’]: res = L.bch(res ,theta_a[index])

36 if [lis [3*j],lis [3*j+2]]==[ ’a’,’-’]: res = L.bch(res ,-theta_a[index ])

37 if [lis [3*j],lis [3*j+2]]==[ ’b’,’+’]: res = L.bch(res ,theta_b[index])

38 if [lis [3*j],lis [3*j+2]]==[ ’b’,’-’]: res = L.bch(res ,-theta_b[index ])

39 return res

40

41

42 # Creation of strings corresponding to commutators in the fundamental group

43
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44 def invert(lis):

45 w=’’

46 for j in range(len(lis)/3):

47 if lis[3*j+2]==’+’:

48 w = lis [3*j]+lis [3*j+1]+’-’+w

49 else:

50 w = lis [3*j]+lis [3*j+1]+’+’+w

51 return w

52

53 def comm(a,b):

54 return a+b+invert(a)+invert(b)

55

56

57 # Checks that the logansion theta is symplectic up to degree N

58

59 boundary = ’’

60 for i in range(g): boundary = boundary + ’b’ + str(i+1) + ’-’ + ’a’ + str(i+1) +

’+’ + ’b’ + str(i+1) + ’+’ + ’a’ + str(i+1) + ’-’

61

62 omegatilde = theta(boundary)

63 omega = sum(L[a[i],b[i]] for i in range(g))

64

65 if omegatilde ==omega:

66 print(’OK: the expansion is symplectic up to order ’+str(N))

67 else:

68 print(’Warning: the given expansion is not symplectic up to the given order !

’)

69

70

71 # Display of an element of the nilpotent free Lie algebra

72

73 import sage.combinat.words.lyndon_word as lyndon_word

74

75 def transform(lis):

76 if lis in [1..g]:

77 return ’a’+str(lis)

78 if lis in [(g+1) ..(2*g)]:

79 return ’b’+str(lis -g)

80 if len(lis)==1:

81 return transform(lis [0])

82 else:

83 return ’[’ + (transform ([lis [0]])) + ’,’ + (transform(lis [1])) +’]’

84

85 def display(x):

86 Llist = (L.basis()).list()

87 LW = LyndonWords (2*g,1).list()

88 for i in [2..N]:

89 LW = LW + LyndonWords (2*g,i).list()

90 if x == 0:

91 return ’0’

92 else:

93 if x != x.leading_monomial ():

94 z=x.leading_coefficient ()

95 return display(x-z*x.leading_monomial ())+’+(’+str(z)+’)*’+display(x.

leading_monomial ())

96 else:

97 for j in range(len(Llist)):

98 if x == Llist[j]:

99 return transform(lyndon_word.standard_bracketing(LW[j]))
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